STEM Lead Learning Expo

DECD have opened registration for their STEM Lead Learning Expo which will be held twice – 8th Sept and 3rd October. You can register through the PLINK site. Click here to go to the registration page.

The Expo will allow teachers and leaders to hear about how lead sites:

  • design STEM learning shoulder-to-shoulder with kids
  • develop self-directed questioning techniques
  • leverage learning ‘huddles’ to drive engagement and stretch thinking
  • foster deep learning through nature play
  • enable learners to identify real world problems for rich inquiries
  • foster industry links that build positive STEM dispositions
  • use design thinking to critically and creatively solve real world problems
  • use a community of inquiry approach to inform their STEM learning design processes.

For a quick look at each school presenting at the Expo see the videos below.

PBAS STEM 10 – What are other schools doing?

This post highlights some of the resources and approaches being taken by the NSW Education Department in the area of STEM. Click on the links provided to be taken to a variety of resources including: planning for STEM (primary & secondary settings), how schools are embedding STEM, Maitland Grossmann High School’s iSTEM curriculum (now used in over 135 schools in NSW), STEM resources page and STEM in industry (agriculture).

 

Planning for STEM

What thinking is required to plan for and implement STEM in schools? STEM learning experiences involve explicit learning and teaching of syllabus content which is applied in project, problem or inquiry-based learning situations that are authentic and contextual.

How are schools embedding STEM Stage 3 (Year 5 & 6)

The Stage 3  Integrated STEM Project involves teachers from 35 schools working either as individual schools or communities of schools. Schools will document their journey in STEM education, highlighting their processes for embedding STEM in their school culture and in classroom teaching and learning practices.

How are schools embedding STEM Stage 4 (Year 7 & 8)

The Stage 4 Integrated STEM Project promotes an interdisciplinary approach to teaching science, technology, engineering and mathematics in Stage4. Teachers engaged in cross-curriculum planning with a major focus on aligning syllabus outcomes, promoting higher order thinking through authentic project-based tasks.

iSTEM Curriculum (Years 9 & 10)

In 2013 Regional Development Australia – Hunter’s ME Program Director Dr Scott Sleap, in collaboration with local industry and STEM teachers at Maitland Grossmann High School developed the iSTEM curriculum. iSTEM is a student centred subject for students in Years 9 and 10 that delivers Science, Technology, Engineering and Mathematics (STEM) in an integrated way.

This page also provides resources associated with the iSTEM program including syllabus documents.

STEM Resources

A broad range of links are provided on this page including links to the following:

  • University of New South Wales – Girls do the maths
  • Scientists and Mathematicians in schools
  • F1 in schools
  • Australian STEM Video Game Challenge
  • Science Bootcamp
  • FIRST® Robotics Australia

STEM in the agricultural industry 

Three videos discussing the science, technology, tools and techniques used in cattle breeding, dairy farming and cotton farming.

I say well done and good job too much!

I take a fair bit of video in my R/1 PE class because it helps me identify student achievement. While I was watching a video of my students doing some ball handling skills, which included dribbling, catching and throwing I noticed that my feedback during that section of the lesson was a combination of phrases like well done and good job. While this type of praise can make students smile and feel good it does not necessarily improve learning.

I’m not discounting general praise statements, for some students it is exactly what they need. I could have however been providing my students much more specific feedback/praise to reinforce the cues I had asked students to focus on when they were catching, throwing and dribbling. For example – watch the ball (don’t look away), when you catch the ball have your arms outstretched not by your side, have soft fingers and big hands, use the tips of your fingers to bounce the ball not your palm and so on. By saying well done I am not acknowledging the specific learning the student has applied, for example, that was a great catch because you held your arms out in front of you. The child is much more likely to hold their arms out in front next time because I have positively reinforced that specific behaviour.

It is not new to me that specific/targeted feedback is more effective than general praise but that has not stopped me from defaulting to a natural response when a child does something well. During a fast paced and busy PE lesson it is easier to revert back to a natural response than it is to identify clearly to the student what they are doing well. It took a video of my teaching to remind me of that.

Have you ever seen or heard yourself teach?
What do you think you would discover if you did?

A quick response formative assessment tool – Plickers

Looking for a formative assessment response tool that does not require your students to have an iPad, PC or laptop? Looking for a tool that still allows you to collect and collate students responses quickly?

Plickers does not require students to have their own device only the teacher. Students need a paper response card to hold up for the teacher to scan using their phone. The paper response cards are free and downloadable from the Plicker’s website.

Below is a Plickers student response card. You will notice that when you set up your classes in Plickers that each student is assigned a number. It is important the student has the correctly numbered card. The card below is card number 1. After a question has been asked the student holds the card up with the letter that they think corresponds with the correct answer at the top. On the card below the letter ‘B’ is at the top. The teacher walks around and scans each card collating all student responses quickly and seeing which students answered correctly or incorrectly. Card sets can be used with multiple classes for example card number 1 can be used across four different classes for four different students.

The videos below shows how to set up an account, classes, questions and scan response cards as well as demonstrating the use of Plickers in a classroom.

 

Plickers Tutorial 2016 Formative Assessment Tool

 
See how a teacher uses Plickers to identify students pre knowledge about a topic before beginning a unit of work

Movement stories for junior primary students

I was listening to a PE Geek Podcast the other day and came across a great resource for junior primary teachers that gets kids moving using stories as a basis for those movements. The stories are produced by BBC School Radio and posted to their website. The idea is that students listen and as part of the story the narrator instructs students on different movements that connect with the narrative for example, stomping through a forest, sneaking into a dragons cave or clanking around in a knights suit of armour. I tried one with my R/1 PE class today and they absolutely loved it! The story we listened to was called Knights, Castles and Dragons.

Knights, Castles and Dragons – the students loved it!

 

Click here to view all the available BBC Let’s Move podcasts. Each podcast can be downloaded to your computer so internet access is not required when you play the file.

Keep in mind that these are just audio files. The next time I use one of these with a class I am planning to make up a slide show of images that relates to the story so the students also have something to look at while they are moving and listening to the story.

Gardens, Chooks and Worms

Garden Programs

Kitchen and food gardens are an increasingly popular way for schools to promote environmental and sustainability learning and connect students with healthy food and lifestyles. Kitchen Gardens

Program Ideas

Kitchen Gardens – From the NSW Education Department

Lesson ideas to use in your school garden for STEM

Gardening 4 Kids blog

 

Want to build a worm farm or a chook shed?

 

Grow your own veggies and native plants

 

Making a garden for kids

Are you a leader in your classroom?

“After a high profile career as CEO, Pierre Pirard decided to redirect his focus and became a teacher. Working in Brussels’ most disadvantaged neighbourhoods, he discovered that these children — usually portrayed as troublemakers — are able to rise above this negative image. He believes that these kids are the future of our society and that we should care for their education, no matter what their socio-cultural and economical background is.”

STEM Teacher Talks 1 with Chris Betcher

This video is taken from the Splash ABC website. Listen to Chris Betcher answer teacher questions about STEM.

“Chris is an Australian K-12 educator with over 25 years experience in helping students and teachers make the most of digital technologies for learning. Chris has been nominated for the edublog awards on several occasions for his educational blog betchablog

PBAS STEM 9 – It’s not just about the facilities

A lot of money is being spent to develop STEM in South Australian schools. But after all is said and done these resources (considering their cost) will not fully support student learning if teacher practice does not also develop.

Improved student learning opportunities in STEM will come from teachers feeling confident about their knowledge and understanding of STEM and their understanding and use of pedagogical practices that are effective in the teaching of STEM.

Teaching practice associated with quality STEM learning includes:

  • Allowing some control to be given to students, increasing student input and responsibility. Read this article for ideas about how to do this.
  • Providing hands on experiential learning. What is experiential learning?
  • Promoting collaboration with peers, community and industry. To find out more about collaboration in the classroom read this article.
  • Promoting risk taking, experimentation and learning from failure. This is not just for students, teachers should model these qualities for their students. To find out more about failure in the STEM classroom read this article.
  • Teachers need to be flexible. STEM may not always address the Curriculum in the way a text book or traditionally planned program might. You may need to change direction mid program depending on where student investigations lead them (it may not be where you thought it might go).
  • Guided inquiry. Teachers develop the skills of facilitating rather than dictating. Students need to be able to independently think and act like engineers through research, trial and error. For a more detailed look at inquiry based learning read this article.
  • Teachers need to embrace digital tools and technology in the classroom. Find ways to make technology work for you and your students. Learn about the SAMR model of technology use by watching this two minute video.

Another important consideration for schools is to think about how STEM programs are structured in classrooms. What are the potential models that a school or teacher might consider?

  1. Teach all four but more emphasis on one or two: A teacher integrates mathematics and science through a challenge based unit of work where students design a vehicle. Source
  2. Integrate one into the other 3 being taught separately: The engineering processes of team work, identify and investigate a problem, design a solution, and testing and evaluation is added into some science and mathematics units, but there are limited links across the science and mathematics subjects. Source
  3. Total integration of all by a teacher: Science teacher integrating, T, E and M into science. A school introduces a new STEM elective focusing on designing digital solutions to real world problems. Source
  4. Divide a STEM curriculum into the separate subjects: Technology, science and maths teachers design a combined unit and each teacher teaches different components of the unit in their separate subject, and with clear contributions from science, maths and technology subjects in solving a common problem. Source

Leaders and teachers have a joint responsibility to ensure that appropriate pedagogy is used in all areas of teaching. If we do not develop our teaching strategies and develop a strong knowledge and understanding of STEM then we risk spending a lot of money for little reward.

Sources:

10 Essential STEM Teaching Practices

Successful students STEM